Ultra-Low Resistance GaN Tunnel Homojunctions with Repeatable Negative Differential Resistance and 150 kA/cm² Current

Advisor: Prof. Siddharth Rajan
Authors: Fatih Akyol, Sriram Krishnamoorthy, Yuewei Zhang

EMC, June 22nd 2016
The Ohio State University

Acknowledgements: National Science Foundation
DMR 1106177
Outline

- Motivation
- Background
 - Stand-alone GaN tunnel homojunctions
 - NPN Diode using a GaN tunnel homojunction
- Summary
Interband Tunnel Junctions

TJ in reverse bias

- E_c
- E_f, p
- E_f, n
- E_v

TJ in forward bias

+ E_c
- E_f, p
- E_f, n
- E_v

Electron \leftrightarrow hole carrier conversion

- Injection of holes into p-type material
- Applications: LEDs, lasers
- Recombination of electrons and holes by tunneling
- Applications: Solar cells
LEDs with Tunnel Junctions

- Top emitting
 - No need to flip-chip
 - Low contact resistance to n-GaN
 - High conductivity in n-layers
 - Especially for UV LEDs, lasers
 - Overcome absorption losses
LEDs with Tunnel Junctions

- Conventional LEDs:
 - Efficiency Droop limits high input power density
 - High power output at low input current using large LED chips
- Cascaded LEDs:
 - High input power density: High voltage, carrier regeneration
- Multi-color LEDs

Efficiency Droop: $\sim 10\%$ to 30%

Cascaded LED Structure

- MQW LED_{n+2}
- TJ_{n+1}
- MQW LED_{n+1}
- TJ_{n}
- MQW LED_{n}
- TJ_{n-1}

- Electron
- Hole
- Inter-band Tunneling

Appl. Phys. Lett. 103, 081107 (2013)*
Outline

- Motivation
- Background
 - Stand-alone GaN tunnel homojunctions
 - NPN Diode using a GaN tunnel homojunction
- Summary
Early Work on Tunnel Junctions

Standard p+ / n+ Tunnel Junctions
- Large E_g
 - Wide depletion region, large energy barrier
- Doping restrictions
- n+ GaN / p+ GaN: High turn-on voltage (>1 V) and differential resistance $\sim 0.02 \ \Omega . \text{cm}^2$ [1]
- n+ GaN / p+ InGaN: differential resistance $\sim 6 \times 10^{-3} \ \Omega . \text{cm}^2$[2]

Early Work on Tunnel Junctions

Standard p+ / n+ Tunnel Junctions
- Large E_g
 - Wide depletion region, large energy barrier
- Doping restrictions

Polarization Engineered Tunnel Junctions
- High density polarization dipole sheet charge
 - Reduction of depletion width
- Reduced tunneling barrier
- GaN/AlN/GaN Junctions: Resistive $\sim 1 \ \Omega \cdot \text{cm}^2$ [1,2]
- GaN/InGaN/GaN Junctions: Low resistance $\sim 1 \times 10^{-4} \ \Omega \cdot \text{cm}^2$ [3]
- AlGaN/InGaN/AlGaN Junctions [4,5]

1) M. J. Grundmann, PhD Dissertation (UCSB)
2) J. Simon et.al., *PRL* 103, 026801 (2009) (Notre Dame)
3) S. Krishnamoorthy APL 102, 113503 (2013) (OSU)
Early Work on Tunnel Junctions

Standard p+ / n+ Tunnel Junctions
- Large E_g
 - Wide depletion region, large energy barrier
- Doping restrictions

Polarization Engineered Tunnel Junctions
- High density polarization dipole sheet charge
 - Reduction of depletion width
- Reduced tunneling barrier

GaN Tunnel homojunction with heavy Si and Mg doping
- Heavy doping (> $1 \times 10^{20} \text{cm}^{-3}$)
 - Reduction of depletion width
- Polarization direction independent
 - Design flexibility, visible transparent, p-side down LEDs, solar cells

Early Work on Tunnel Junctions

GaN Tunnel homojunction with heavy Si and Mg doping
- Heavy doping ($> 1 \times 10^{20} \text{cm}^{-3}$)
 - Reduction of depletion width
- Polarization direction independent
 - Design flexibility, visible transparent, p-side down LEDs, solar cells

Early Work on Tunnel Junctions

GaN Tunnel homojunction with heavy Si and Mg doping
- Heavy doping (> 1×10^{20} cm$^{-3}$)
 - Reduction of depletion width
- Polarization direction independent
 - Design flexibility, visible transparent, p-side down LEDs, solar cells

- NPN diode grown by Ammonia MBE
- Using Si: 2×10^{20} cm$^{-3}$ & Mg: 1×10^{20} cm$^{-3}$, NPN diode dif. resistance $\sim 2 \times 10^{-4}$ Ω.cm2 at 10 kA/cm2 [1]

EPFL, Switzerland
Early Work on Tunnel Junctions

GaN Tunnel homojunction with heavy Si and Mg doping
- Heavy doping (> 1 x 10^{20} cm^{-3})
- Reduction of depletion width
- Polarization direction independent
- Design flexibility, visible transparent, p-side down LEDs, solar cells

NPN diode grown by Ammonia MBE
- Using Si: 2 x 10^{20} cm^{-3} & Mg: 1 x 10^{20} cm^{-3}, NPN diode dif. resistance ~ 2 x 10^{-4} \Omega . cm^2 at 10 kA/cm^2 [1]

VCSEL: MOCVD active region + Ammonia MBE n++ [2]
- Replace lossy ITO with GaN TJ
- VCSEL with TJ showed ~1.5 V higher

EPFL, Switzerland

UCSB
Polarization-Engineered Tunnel Junctions

- AlN barrier TJ: M. J. Grundmann, PhD Dissertation (UCSB)
- InGaN/GaN/InGaN: S. Krishnamoorthy *APL* 102, 113503 (2013)
- 55%AlGaN /InGaN/ 55%AlGaN: Y. Zhang et al. 73rd Device Res. Conf.
Outline

- Motivation
- Background
- Stand-alone GaN tunnel homojunctions
- NPN Diode using a GaN tunnel homojunction
- Summary
GaN Homo-tunnel Junctions: stand alone

Epitaxial Design

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Doping</th>
</tr>
</thead>
<tbody>
<tr>
<td>p++GaN</td>
<td>20 nm</td>
<td>3x10^{20} cm^{-3}</td>
</tr>
<tr>
<td>p+GaN</td>
<td>180 nm</td>
<td>1x10^{20} cm^{-3}</td>
</tr>
<tr>
<td>p++GaN</td>
<td>20 nm</td>
<td></td>
</tr>
<tr>
<td>n++GaN</td>
<td>10 nm</td>
<td></td>
</tr>
<tr>
<td>n-GaN 100 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOCVD Si:GaN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample	Si-doping (cm^{-3})	Mg-doping (cm^{-3})

- A: 2x10^{20} 3x10^{20}
- B: 4x10^{20} 3x10^{20}
- C: 4x10^{20} 5x10^{20}

MBE growth
- Very high doping
- Sharp doping profile
GaN Homo-tunnel Junctions: stand alone

Epitaxial Design

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si-doping (cm⁻³)</th>
<th>Mg-doping (cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2x10²⁰</td>
<td>3x10²⁰</td>
</tr>
<tr>
<td>B</td>
<td>4x10²⁰</td>
<td>3x10²⁰</td>
</tr>
<tr>
<td>C</td>
<td>4x10²⁰</td>
<td>5x10²⁰</td>
</tr>
</tbody>
</table>

MBE growth
✓ Very high doping
✓ Sharp doping profile

AFM scan
5 x 5 μm², rms~0.5 nm

STEM z-contrast scan
✓ No defects observed
✓ Defects < 5.9 x 10⁸ cm⁻²
GaN Homo-tunnel Junctions: stand alone

Epitaxial Design

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si-doping (cm$^{-3}$)</th>
<th>Mg-doping (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2x1020</td>
<td>3x1020</td>
</tr>
<tr>
<td>B</td>
<td>4x1020</td>
<td>3x1020</td>
</tr>
<tr>
<td>C</td>
<td>4x1020</td>
<td>5x1020</td>
</tr>
</tbody>
</table>

MBE growth

✓ Very high doping
✓ Sharp doping profile

Sample A:

✓ ~ 100 A/cm2 at -1 V
✓ Lower forward current
GaN Homo-tunnel Junctions: stand alone

Epitaxial Design

- Sample A:
 - ~ 100 A/cm² at -1 V
 - Lower forward current
- Sample B:
 - ~ 500 A/cm² at -1 V
 - Higher forward current ~130 A/cm² at -1 V

MBE growth
- Very high doping
- Sharp doping profile

Sample	Si-doping (cm⁻³)	Mg-doping (cm⁻³)
A | 2x10²⁰ | 3x10²⁰
B | 4x10²⁰ | 3x10²⁰
C | 4x10²⁰ | 5x10²⁰

TJ

- p++GaN: 20nm
- Mg: 3x10²⁰ cm⁻³
- p+GaN: 180 nm
- Mg: 1x10²⁰ cm⁻³
- p++GaN: 20 nm
- n++GaN: 10 nm
- n-GaN 100 nm
- Si: 4x10¹⁹ cm⁻³
- MOCVD Si:GaN substrate

Current (A/cm²)

Voltage (V)
GaN Homo-tunnel Junctions: stand alone

Sample A:
- ~100 A/cm² at -1 V
- Lower forward current

Sample B:
- ~500 A/cm² at -1 V (limited by p-contact)
- Forward current ~125 A/cm² at -1 V

Sample C:
- ~750 A/cm² at -1 V (limited by p-contact)
- Forward current ~190 A/cm² at -1 V
- Negative differential resistance (NDR) observed first time in Nitride p-n diodes

Epitaxial Design
- Very high doping
- Sharp doping profile

MBE growth

TJ

Epitaxial Design
- Very high doping
- Sharp doping profile

Sample	Si-doping (cm⁻³)	Mg-doping (cm⁻³)
A | 2x10²⁰ | 3x10²⁰ |
B | 4x10²⁰ | 3x10²⁰ |
C | 4x10²⁰ | 5x10²⁰ |

Current (A/cm²) vs Voltage (V)

- Sample A:
 - ~100 A/cm² at -1 V
 - Lower forward current
- Sample B:
 - ~500 A/cm² at -1 V (limited by p-contact)
 - Forward current ~125 A/cm² at -1 V
- Sample C:
 - ~750 A/cm² at -1 V (limited by p-contact)
 - Forward current ~190 A/cm² at -1 V
 - Negative differential resistance (NDR) observed first time in Nitride p-n diodes

MOCVD Si:GaN substrate

MBE growth
- Very high doping
- Sharp doping profile
GaN Homo-tunnel Junctions: stand alone

Epitaxial Design

- **p++GaN**: 20nm
- **Mg**: 3×10^{20} cm$^{-3}$
- **p+GaN**: 180 nm
- **Mg**: 1×10^{20} cm$^{-3}$
- **p++GaN**: 20 nm
- **n++GaN**: 10 nm
- **n-GaN**: 100 nm
 - Si: 4×10^{19} cm$^{-3}$
- **MOCVD Si**: GaN substrate

MBE growth
- ✔ Very high doping
- ✔ Sharp doping profile

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si-doping (cm$^{-3}$)</th>
<th>Mg-doping (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2×10^{20}</td>
<td>3×10^{20}</td>
</tr>
<tr>
<td>B</td>
<td>4×10^{20}</td>
<td>3×10^{20}</td>
</tr>
<tr>
<td>C</td>
<td>4×10^{20}</td>
<td>5×10^{20}</td>
</tr>
</tbody>
</table>

- NDR observed from various devices in sample C (peak to valley ratio (PVCR) ~ 1.1)
- Peak current of $\sim 300-350$ A/cm2 at $V = 1.6 - 1.7$ V
- 1 A/cm2 at $V = 0.01$ V, excellent for solar cells
GaN Homo-tunnel Junctions: stand alone

Epitaxial Design

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si-doping (cm$^{-3}$)</th>
<th>Mg-doping (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2x1020</td>
<td>3x1020</td>
</tr>
<tr>
<td>B</td>
<td>4x1020</td>
<td>3x1020</td>
</tr>
<tr>
<td>C</td>
<td>4x1020</td>
<td>5x1020</td>
</tr>
</tbody>
</table>

MBE growth
- Very high doping
- Sharp doping profile

- Repeatable with (+) and (-) voltage sweep
- Negligible degradation with multiple scans
GaN Homo-tunnel Junctions: stand alone

Epitaxial Design

- Repeatable with (+) and (-) voltage sweep
- Negligible degradation with multiple scans

MBE growth
- Very high doping
- Sharp doping profile

What can enable the peak forward tunneling current at ~1.6 V?

Sample	Si-doping (cm\(^{-3}\))	Mg-doping (cm\(^{-3}\))
A | 2x10\(^{20}\) | 3x10\(^{20}\) |
B | 4x10\(^{20}\) | 3x10\(^{20}\) |
C | 4x10\(^{20}\) | 5x10\(^{20}\) |

Epitaxial Design

p++GaN: 20nm
Mg: 3x10\(^{20}\) cm\(^{-3}\)
p+GaN: 180 nm
Mg: 1x10\(^{20}\) cm\(^{-3}\)
p++GaN: 20 nm
n++GaN: 10 nm
n-GaN 100 nm
Si: 4x10\(^{19}\) cm\(^{-3}\)
MOCVD Si:GaN substrate

Repeatable with (+) and (-) voltage sweep
Negligible degradation with multiple scans
GaN Homo-tunnel Junctions: Band-tail states

- Fermi-level pinned above the valance band
 - No states for tunneling at zero bias
 - Can only tunnel under reverse bias

Introducing band-tail states in p-GaN
- States for tunneling at zero & forward bias
GaN Homo-tunnel Junctions: Band-tail states

- Introducing band-tail states in p-GaN
- States for tunneling at zero & forward bias

Kane’s formula of density of states (DOS):

$$\rho(E) = \frac{(2m)^{3/2}}{2\pi^2\hbar^3} \eta^{1/2} y(E/\eta)$$

Kane’s function:

$$y(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} \sqrt{x-\zeta} \exp\left(-\zeta^2\right) d\zeta$$

- Band tail states can be responsible for forward tunneling at high (~1.6 V) forward voltage
Outline

- Motivation
- Background
- Stand-alone GaN tunnel homojunctions
- NPN Diode using a GaN tunnel homojunction
- Summary
Epitaxial design

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Doping</th>
</tr>
</thead>
<tbody>
<tr>
<td>n++GaN</td>
<td>20 nm</td>
<td>Si: 1×10^{20} cm$^{-3}$</td>
</tr>
<tr>
<td>n-GaN</td>
<td>150 nm</td>
<td>Si: 4×10^{19} cm$^{-3}$</td>
</tr>
<tr>
<td>n++GaN</td>
<td>10 nm</td>
<td>Si: 4×10^{20} cm$^{-3}$</td>
</tr>
<tr>
<td>p++GaN</td>
<td>20 nm</td>
<td>Mg: 3×10^{20} cm$^{-3}$</td>
</tr>
<tr>
<td>p-GaN</td>
<td>100 nm</td>
<td>Mg: 6×10^{19} cm$^{-3}$</td>
</tr>
<tr>
<td>uid-GaN</td>
<td>15 nm</td>
<td></td>
</tr>
<tr>
<td>n-GaN</td>
<td>100 nm</td>
<td>Si: 4×10^{19} cm$^{-3}$</td>
</tr>
<tr>
<td>MOCVD Si:GaN substrate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schematic energy band diagram

- N-type contacts in both terminals => Low contact resistance
- Increased Si & Mg doping compared to the report of Malinverni et al. (Si: 2×10^{20} cm$^{-3}$ & Mg: 1×10^{20} cm$^{-3}$)

GaN Homo-tunnel Junctions: NPN diode

- Forward voltage of 3.3 V at 20 A/cm²
- Differential resistance 4×10^{-5} ohm.cm² at 10 kA/cm²
- Reaching record high 150 kA/cm² at 7.6 V
- Lowest reported differential resistance of 1×10^{-5} ohm.cm² at 150 kA/cm²
GaN Homo-tunnel Junctions: NPN diode

- Forward voltage of 3.3 V at 20 A/cm²
- Differential resistance 4×10^{-5} ohm.cm² at 10 kA/cm²
- Reaching record high 150 kA/cm² at 7.6 V
- Lowest reported differential resistance of 1×10^{-5} ohm.cm² at 150 kA/cm²
Summary

- First GaN Esaki diodes demonstrated with repeatable NDR characteristics
 - Peak forward current ~300-350 A/cm² at ~1.6 V
 - Band-tail states can be responsible

- Highest c.w. current operation of any Nitride bipolar device with lowest TJ resistance
 - Tunneling current up to 150 kA/cm²
 - Lowest reported tunneling resistance in Nitrides
 - 4×10^{-5} ohm.cm² at 10 kA/cm²
 - 1×10^{-5} ohm.cm² at 150 kA/cm²

F. Akyol et al.