Ultra-Low Resistance GaN/InGaN/GaN Tunnel Junctions with Indium Content < 15%

Fatih Akyol, Sriram Krishnamoorthy, Yuewei Zhang, Siddharth Rajan

The Ohio State University

IWN, Oct 6th 2016

Funding: NSF EECS-1408416
Outline

- Motivation
- Background
- GaN/InGaN/GaN tunnel junctions with low (<15%) Indium content
- Summary
Interband Tunnel Junctions

TJ in forward bias

- Electron \leftrightarrow hole carrier conversion

$$E_c + E_{f,n}$$

- Injection of holes into p-type material
- Applications: LEDs, lasers

TJ in reverse bias

- Recombination of electrons and holes by tunneling
- Applications: Solar cells

$$E_c - E_{f,p}$$
LEDs with Tunnel Junctions

- Non-equilibrium hole injection through interband tunneling.
LEDs with Tunnel Junctions

- Conventional LEDs:
 - Efficiency Droop
 - Large LED chips operating at low current have to be used for high output power

![Graph showing normalized EQE vs. current density with EQE_{peak} and EQE_{op} labeled, along with J_{op}. The graph indicates a decrease in EQE from EQE_{peak} to EQE_{op} with an approximate drop of 10% to 30%.]
LEDs with Tunnel Junctions

- Conventional LEDs:
 - Efficiency Droop
 - Large LED chips operating at low current has to be used for high output power

- Cascaded LEDs:
 - High input power density: High voltage, carrier regeneration

- Multi-color LEDs

Appl. Phys. Lett. 103, 081107 (2013)
Outline

- Motivation
- Background
- GaN/InGaN/GaN tunnel junctions with low (<15%) Indium content
- Summary
Previous Work on Tunnel Junctions

Standard p+ / n+ Tunnel Junctions

- Large E_g
 - Wide depletion region, large energy barrier
- Doping restrictions
- n+ GaN / p+ GaN: High turn-on voltage (>1 V) and differential resistance ~0.02 $\Omega \cdot \text{cm}^2$ [1]
- n+ GaN / p+ InGaN: differential resistance ~6 x 10^{-3} $\Omega \cdot \text{cm}^2$ [2]

Previous Work on Tunnel Junctions

Standard p+ / n+ Tunnel Junctions
- Large E_g
- Wide depletion region, large energy barrier
- Doping restrictions

Polarization Engineered Tunnel Junctions
- High density polarization dipole sheet charge
 - Reduction of depletion width
- Reduced tunneling barrier
- GaN/InGaN/GaN Junctions: Low resistance $\sim 1 \times 10^{-4} \, \Omega \cdot \text{cm}^2$ [1]
- AlGaN/InGaN/AlGaN Junctions: $\sim 5 \times 10^{-4} \, \Omega \cdot \text{cm}^2$ [2,3]

UV TJs
1) S. Krishnamoorthy APL 102, 113503 (2013) (OSU)
2) Y. Zhang, APL, 106 (14), 141103 (2015).
3) Y. Zhang, APL 109 (12), 121102
Previous Work on Tunnel Junctions

Standard p+ / n+ Tunnel Junctions
- Large E_g
 - Wide depletion region, large energy barrier
 - Doping restrictions

Polarization Engineered Tunnel Junctions
- High density polarization dipole sheet charge
 - Reduction of depletion width
 - Reduced tunneling barrier

GaN Tunnel homojunction with heavy Si and Mg doping
- Heavy doping (> $1 \times 10^{20} \text{cm}^{-3}$)
 - Reduction of depletion width
- Polarization direction independent
 - Design flexibility, p-side down LEDs, solar cells

Previous Work on Tunnel Junctions

GaN Tunnel homojunction with heavy Si and Mg doping

- NPN diode grown by Ammonia MBE
- Using Si: $2 \times 10^{20} \text{cm}^{-3}$ & Mg: $1 \times 10^{20} \text{cm}^{-3}$, NPN diode dif. resistance $\sim 2 \times 10^{-4} \Omega \cdot \text{cm}^2$ at 10kA/cm^2 [1]

EPFL, Switzerland
Previous Work on Tunnel Junctions

GaN Tunnel homojunction with heavy Si and Mg doping

- NPN diode grown by Ammonia MBE
- Using Si: $2 \times 10^{20} \text{cm}^{-3}$ & Mg: $1 \times 10^{20} \text{cm}^{-3}$, NPN diode dif. resistance $\sim 2 \times 10^{-4} \ \Omega \text{cm}^2$ at 10 kA/cm2 [1]

- VCSEL: MOCVD active region + Ammonia MBE n++ [2]
- Replace ITO with GaN TJ
- VCSEL with TJ showed ~ 1.5 V higher

EPFL, Switzerland

UCSB

Akyol.4@osu.edu; rajan@ece.osu.edu
Stand alone Homojunction TJs

- MBE growth
- Very high doping
- Sharp doping profile

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si-doping (cm$^{-3}$)</th>
<th>Mg-doping (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2x1020</td>
<td>3x1020</td>
</tr>
<tr>
<td>B</td>
<td>4x1020</td>
<td>3x1020</td>
</tr>
<tr>
<td>C</td>
<td>4x1020</td>
<td>5x1020</td>
</tr>
</tbody>
</table>

- Increasing Si & Mg doping boosts both forward and reverse tunneling

F. Akyol et al.
Stand alone Homojunction TJs

MBE growth
✓ Very high doping
✓ Sharp doping profile

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si-doping (cm⁻³)</th>
<th>Mg-doping (cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2x10²⁰</td>
<td>3x10²⁰</td>
</tr>
<tr>
<td>B</td>
<td>4x10²⁰</td>
<td>3x10²⁰</td>
</tr>
<tr>
<td>C</td>
<td>4x10²⁰</td>
<td>5x10²⁰</td>
</tr>
</tbody>
</table>

- NDR observed from various devices in sample C
- Repeatable with (+) and (-) multiple voltage sweep
- Increasing Si & Mg doping boosts both forward and reverse tunneling
- Band-tail states might enable forward tunneling
- Nitride solar cells: Contacts & multi-junction
- NDR can enable new devices for logic and high frequency applications

F. Akyol et al.
Previous Work on Tunnel Junctions

Tunnel junctions are now feasible in a large range of band gaps
Recent Reports of GaN NPN diodes

<table>
<thead>
<tr>
<th>Institution (Author)</th>
<th>Growth Method</th>
<th>Orientation</th>
<th>TJ Design</th>
<th>Doping</th>
<th>R at 20 A/cm²</th>
<th>R at high current</th>
<th>R at very high current</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSU (S. Krishnamoorthy, 2013) [1]</td>
<td>PA-MBE</td>
<td>(0001)</td>
<td>p+GaN/ 4 nm uid- 25% InGaN /n+GaN</td>
<td>Mg: 1 x 10¹⁹cm⁻³ Si: 5 x 10¹⁹cm⁻³</td>
<td>-</td>
<td>R=2 x 10⁻⁴ Ω.cm² at J=2 kA/cm²</td>
<td>-</td>
</tr>
<tr>
<td>Meijo U. (T. Takeuchi, 2015) [2]</td>
<td>MOVPE</td>
<td>(0001)</td>
<td>p++GaN/ 2 nm p++ 40% InGaN/n++GaN</td>
<td>Mg: 1 x 10²⁰cm⁻³ Si: 3 x 10²⁰cm⁻³</td>
<td>R=4 x 10⁻³ Ω.cm²</td>
<td>R=4 x 10⁻⁴ Ω.cm² at J=5 kA/cm²</td>
<td>-</td>
</tr>
<tr>
<td>EPFL (M. Malinverni, 2015) [3]</td>
<td>NH₃-MBE</td>
<td>(0001)</td>
<td>p++GaN/ n++GaN</td>
<td>Mg: 1 x 10²⁰cm⁻³ Si: 2 x 10²⁰cm⁻³</td>
<td>-</td>
<td>R=3.7 x 10⁻⁴ Ω.cm² at J~3 kA/cm²</td>
<td>R~1.5 x 10⁻⁴ Ω.cm² at J=20 kA/cm² *</td>
</tr>
<tr>
<td>OSU (F. Akyol, 2016)[4]</td>
<td>PA-MBE</td>
<td>(0001)</td>
<td>p++GaN/ n++GaN</td>
<td>Mg: 5 x 10²⁰cm⁻³ Si: 4 x 10²⁰cm⁻³</td>
<td>R=8 x 10⁻³ Ω.cm²</td>
<td>R=1.3 x 10⁻⁴ Ω.cm² at J=3 kA/cm²</td>
<td>R=1 x 10⁻⁵ Ω.cm² at J=150 kA/cm²</td>
</tr>
<tr>
<td>UCSB (Young, 2016) [5]</td>
<td>MOCVD (np diode) NH₃-MBE (top n-layer)</td>
<td>(20-2-1)</td>
<td>p++GaN/ n++GaN</td>
<td>Mg: 3 x 10²⁰cm⁻³ Si: 1 x 10²⁰cm⁻³ O: 2 x 10²⁰cm⁻³</td>
<td>-</td>
<td>-</td>
<td>R~1.5 x 10⁻⁴ Ω.cm² at J=10 kA/cm²</td>
</tr>
<tr>
<td>Meijo U. (T. Takeuchi, 2016) [6]</td>
<td>MOVPE</td>
<td>(0001)</td>
<td>p++GaN/ 2 nm p++ InGaN grade to 40% 2 nm n++ InGaN grade to 40% /n++GaN</td>
<td>Mg: 1 x 10²⁰cm⁻³ Si: 7 x 10²⁰cm⁻³</td>
<td>-</td>
<td>R=2.3 x 10⁻⁴ Ω.cm² at J=3 kA/cm²</td>
<td>-</td>
</tr>
</tbody>
</table>

Recent Reports of GaN NPN diodes

<table>
<thead>
<tr>
<th>Institution (Author)</th>
<th>Growth Method</th>
<th>Orientation</th>
<th>TJ Design</th>
<th>Doping</th>
<th>R at 20 A/cm²</th>
<th>R at high current</th>
<th>R at very high current</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSU (S. Krishnamoorthy, 2013) [1]</td>
<td>PA-MBE</td>
<td>(0001)</td>
<td>p+GaN/4 nm uid- 25% InGaN/n+GaN</td>
<td>Mg: 1 x 10¹⁹ cm⁻³ Si: 5 x 10¹⁹ cm⁻³</td>
<td>-</td>
<td>R=2 x 10⁻⁴ Ω.cm² at J=2 kA/cm²</td>
<td>-</td>
</tr>
<tr>
<td>Meijo U. (T. Takeuchi, 2015) [2]</td>
<td>MOVPE</td>
<td>(0001)</td>
<td>p++GaN/2 nm p++ 40% InGaN/n++GaN</td>
<td>Mg: 1 x 10²⁰ cm⁻³ Si: 3 x 10²⁰ cm⁻³</td>
<td>R=4 x 10⁻³ Ω.cm²</td>
<td>R=4 x 10⁻⁴ Ω.cm² at J=5 kA/cm²</td>
<td>-</td>
</tr>
<tr>
<td>EPFL (M. Malinverni, 2015) [3]</td>
<td>NH₃-MBE</td>
<td>(0001)</td>
<td>p++GaN/n++GaN</td>
<td>Mg: 1 x 10²⁰ cm⁻³ Si: 2 x 10²⁰ cm⁻³</td>
<td>-</td>
<td>R=3.7 x 10⁻⁴ Ω.cm² at J=3 kA/cm²</td>
<td>R~1.5 x 10⁻⁴ Ω.cm² at J=150 kA/cm²</td>
</tr>
<tr>
<td>OSU (F. Akyol, 2016)[4]</td>
<td></td>
<td></td>
<td>n++GaN</td>
<td>Si: 4 x 10²⁰ cm⁻³</td>
<td>Ω.cm² *</td>
<td>Ω.cm² at J=3 kA/cm² *</td>
<td>Ω.cm² at J=10 kA/cm²</td>
</tr>
<tr>
<td>UCSB (Young, 2016) [5]</td>
<td>MOCVD (np diode) NH₃-MBE (top n-layer)</td>
<td>(20-2-1)</td>
<td>p++GaN/n++GaN</td>
<td>Mg: 3 x 10²⁰ cm⁻³ Si: 1 x 10²⁰ cm⁻³ O: 2 x 10²⁰ cm⁻³</td>
<td>-</td>
<td>-</td>
<td>R~1.5 x 10⁻⁴ Ω.cm² at J=10 kA/cm²</td>
</tr>
<tr>
<td>Meijo U. (T. Takeuchi, 2016) [6]</td>
<td>MOVPE</td>
<td>(0001)</td>
<td>p++GaN/2 nm p++ InGaN grade to 40% 2 nm n++ InGaN grade to 40% /n++GaN</td>
<td>Mg: 1 x 10²⁰ cm⁻³ Si: 7 x 10²⁰ cm⁻³</td>
<td>-</td>
<td>R=2.3 x 10⁻⁴ Ω.cm² at J=3 kA/cm²</td>
<td>-</td>
</tr>
</tbody>
</table>

Can we combine heavy doping with polarization engineering for even lower resistance?
Combining polarization & heavy doping

To get more MOCVD-compatible conditions: can we combine both techniques?

- Introducing InGaN could reduce the required doping density
- Increasing doping density could reduce InGaN composition

Advantages:
Lower absorption
Lower defect generation
Outline

- Motivation
- Background
- GaN/InGaN/GaN tunnel junctions with low (<15%) Indium content
- Summary
GaN/InGaN/GaN TJs with low In\%: Design

Epitaxial Design

<table>
<thead>
<tr>
<th>Sample</th>
<th>InGaN thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 nm</td>
</tr>
<tr>
<td>B</td>
<td>2 nm</td>
</tr>
<tr>
<td>C</td>
<td>3 nm</td>
</tr>
<tr>
<td>D</td>
<td>5 nm</td>
</tr>
</tbody>
</table>

- **n++GaN:** 20 nm, Si: 1×10^{20} cm$^{-3}$
- **n-GaN:** 130 nm, Si: 1×10^{19} cm$^{-3}$
- **n++GaN:** 10 nm, Si: 5×10^{20} cm$^{-3}$
- **p++In$_{0.12}$Ga$_{0.88}$N:** 0 nm - 5 nm, Mg: 1.5×10^{20} cm$^{-3}$
- **p++GaN:** 20 nm, Mg: 5×10^{20} cm$^{-3}$
- **p+GaN:** 280 nm, Mg: 6×10^{19} cm$^{-3}$
- **uid-GaN:** 20 nm
- **n-GaN:** 100 nm, Si: 1×10^{19} cm$^{-3}$
- **MOCVD Si:GaN substrate**
GaN/InGaN/GaN TJs with low In%: Design

Epitaxial Design

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Thickness</th>
<th>Composition</th>
<th>Si Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>n++GaN</td>
<td>20 nm</td>
<td>0% In</td>
<td>1×10^{20} cm$^{-3}$</td>
</tr>
<tr>
<td>n-GaN</td>
<td>130 nm</td>
<td>In${12}$Ga${88}$N</td>
<td>1×10^{19} cm$^{-3}$</td>
</tr>
<tr>
<td>n++GaN</td>
<td>10 nm</td>
<td>2% In</td>
<td>5×10^{20} cm$^{-3}$</td>
</tr>
<tr>
<td>p++In${12}$Ga${88}$N</td>
<td>0 nm - 5 nm</td>
<td>Mg: 1.5×10^{20} cm$^{-3}$</td>
<td></td>
</tr>
<tr>
<td>p++GaN</td>
<td>20 nm</td>
<td>5% In</td>
<td>Mg: 5×10^{20} cm$^{-3}$</td>
</tr>
<tr>
<td>p+GaN</td>
<td>280 nm</td>
<td>10% In</td>
<td>Mg: 6×10^{19} cm$^{-3}$</td>
</tr>
<tr>
<td>uid-GaN</td>
<td>20 nm</td>
<td>15% In</td>
<td></td>
</tr>
<tr>
<td>n-GaN</td>
<td>100 nm</td>
<td>20% In</td>
<td></td>
</tr>
<tr>
<td>Si: GaN</td>
<td>MOCVD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tunnel Junction
- 300 nm In$_{0.12}$Ga$_{0.88}$N
- uid-GaN: 100 nm

PIN Diode
- MOCVD Si:GaN substrate

In$_{0.12}$Ga$_{0.78}$N intensity vs. angle (arcs)
GaN/InGaN/GaN TJs with low In%: I-V

- Good rectification for all samples
- ~7-8 orders between -6 V and 6 V
GaN/InGaN/GaN TJs with low In%: I-V

- Good rectification for all samples
- ~7-8 orders between -6 V and 6 V
- At 20 A/cm²
 - Sample A: 3.3 V
 - Sample B: 3.3 V
 - Sample C: 3.18 V
 - Sample D: 3.96 V
- Lowest voltage drop from 3 nm InGaN (sample C)

<table>
<thead>
<tr>
<th>Sample</th>
<th>InGaN thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 nm</td>
</tr>
<tr>
<td>B</td>
<td>2 nm</td>
</tr>
<tr>
<td>C</td>
<td>3 nm</td>
</tr>
<tr>
<td>D</td>
<td>5 nm</td>
</tr>
</tbody>
</table>
GaN/InGaN/GaN TJs with low In%: I-V

- Measured up to cw current of 30 kA/cm²
- At 5 kA/cm²
 - Sample A: 4.78 V
 - Sample B: 4.56 V
 - **Sample C: 4.04 V**
 - Sample D: 5.34 V

<table>
<thead>
<tr>
<th>Sample</th>
<th>InGaN thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 nm</td>
</tr>
<tr>
<td>B</td>
<td>2 nm</td>
</tr>
<tr>
<td>C</td>
<td>3 nm</td>
</tr>
<tr>
<td>D</td>
<td>5 nm</td>
</tr>
</tbody>
</table>
GaN/InGaN/GaN TJs with low In%: I-V

- Sample C => lowest resistance at both low & high current
- At 20 A/cm²:
 - Sample A: R=8.9 x 10⁻³ Ω.cm²
 - Sample B: R=9.5 x 10⁻³ Ω.cm²
 - Sample C: R=5.7 x 10⁻³ Ω.cm²
 - Sample D: R=1.7 x 10⁻² Ω.cm²

- Measured up to cw current of 30 kA/cm²
- At 5 kA/cm²:
 - Sample A: 4.78 V
 - Sample B: 4.56 V
 - Sample C: 4.04 V
 - Sample D: 5.34 V

<table>
<thead>
<tr>
<th>Sample</th>
<th>InGaN thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 nm</td>
</tr>
<tr>
<td>B</td>
<td>2 nm</td>
</tr>
<tr>
<td>C</td>
<td>3 nm</td>
</tr>
<tr>
<td>D</td>
<td>5 nm</td>
</tr>
</tbody>
</table>

n++GaN: 20 nm
Si: 1x10²⁰ cm⁻³

n-GaN 130 nm
Si: 1x10¹⁹ cm⁻³

n++GaN: 10 nm
Si: 5x10²⁰ cm⁻³

p++In₀.₁₂Ga₀.₈₈N: 0 nm - 5 nm
Mg: 1.5 x 10²⁰ cm⁻³

p++GaN: 20 nm
Mg: 5 x 10²⁰ cm⁻³

p+GaN: 280 nm
Mg: 6x10¹⁹ cm⁻³

uid-GaN 20 nm

n-GaN: 100 nm
Si: 1x10¹⁹ cm⁻³

MOCVD Si:GaN substrate

Tunnel Junction

PIN Diode

0-> 3 nm
5 nm

Current (kA/cm²)
Voltage (V)

Differential Resistance (ohm.cm²)
GaN/InGaN/GaN TJs with low In%

Zero-bias energy-band diagram

- Lower tunneling width and barrier
- Further increase in InGaN thickness increases tunneling width (due to lower Mg doping in the InGaN layer)

✓ Lower tunneling width and barrier
✓ Further increase in InGaN thickness increases tunneling width (due to lower Mg doping in the InGaN layer)
Comparison of high current TJ resistance

<table>
<thead>
<tr>
<th>Institution</th>
<th>Device</th>
<th>Voltage at 5 kA/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPFL (M. Malinverni, 2015) [1]</td>
<td>GaN n+/p+</td>
<td>5.7 V</td>
</tr>
<tr>
<td>OSU (F. Akyol, 2016) [2]</td>
<td>GaN n+/p+</td>
<td>4.76 V</td>
</tr>
<tr>
<td>Meijo U. (T. Takeuchi, 2016) [3]</td>
<td>Graded InGaN to 40%</td>
<td>4.8 V</td>
</tr>
<tr>
<td>UCSB (Young, 2016) [4]</td>
<td>GaN n+/p+</td>
<td>4.67 V</td>
</tr>
<tr>
<td>This Work</td>
<td>InGaN 12%</td>
<td>4.04 V</td>
</tr>
</tbody>
</table>

- Polarization engineering combined with high doping can enable low voltage drop
- Low Indium composition reduces the absorption losses
- Further optimization may be possible with reduced doping density for MOCVD compatible conditions

Summary

Systematic study on low In content (<15%) InGaN TJs with heavy Si and Mg doping

- Reduced voltage drop obtained from 3 nm InGaN sample compared to GaN tunnel homojunction
- Further increase of InGaN thickness increases turn-on voltage
- Keeping In-composition low for visible transparent TJ, record low voltage drop demonstrated

<table>
<thead>
<tr>
<th>Institution</th>
<th>Device</th>
<th>Voltage at 5 kA/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPFL (M. Malinverni, 2015) [1]</td>
<td>GaN n+/p+</td>
<td>5.7 V</td>
</tr>
<tr>
<td>OSU (F. Akyol, 2016) [2]</td>
<td>GaN n+/p+</td>
<td>4.76 V</td>
</tr>
<tr>
<td>Meijo U. (T. Takeuchi, 2016) [3]</td>
<td>Graded InGaN to 40%</td>
<td>4.8 V</td>
</tr>
<tr>
<td>UCSB (Young, 2016) [4]</td>
<td>GaN n+/p+</td>
<td>4.67 V</td>
</tr>
<tr>
<td>This Work</td>
<td>InGaN 12%</td>
<td>4.04 V</td>
</tr>
</tbody>
</table>

Backup slides
GaN/InGaN/GaN TJs with low In%: Design

Epitaxial Design

<table>
<thead>
<tr>
<th>Structure</th>
<th>Thickness</th>
<th>n++GaN: 20 nm</th>
<th>Si: 1x10^{20} cm^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-GaN</td>
<td>130 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si: 1x10^{19} cm^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n++GaN: 10 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si: 5x10^{20} cm^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p++In_{0.12}Ga_{0.88}N: 0 nm- 5 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg: 1.5 x 10^{20} cm^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p++GaN: 20 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg: 5 x 10^{20} cm^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p+GaN:280 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg: 6x10^{19} cm^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uid-GaN: 20 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-GaN: 100 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si: 1x10^{19} cm^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOCVD Si:GaN substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- XRD data fits well with 12% and very different from the fits with 25% and 40%
- Indium content < 15%

SAMPLE C
Intensity (a.u.)
ω−2θ (arcsecs)

Akyol.4@osu.edu; rajan@ece.osu.edu